

ADVANCED **PO**WER CONVERSION TECHNO**L**OGIES BASED ON **O**NBOARD AMMONIA CRACKING THROUGH NOVEL MEMBRANE REACTORS

Palladium membranes

Winter School 2025 Eindhoven, 27-28 January

Dr. Alba Arratibel alba.arratibel@tecnalia.com

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor CINEA can be held responsible for them."

Content

- \succ Membranes for H₂ separation
- > Why Palladium?
- > Membrane preparation
- > Properties
- Membrane performance
- > Applications/EU projects

Membranes for H₂ separation

Winter School Eindhoven, 27-28/01/2025

Membranes for gas separation

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

Membranes for gas separation

Winter School Eindhoven, 27-28/01/2025

Why Palladium?

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

Why Palladium?

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

tecnala MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

1. Fabrication techniques (supported membranes)

PVD (Plasma vapor deposition) **CVD** (Chemical vapor deposition)

Wet techniques

ELP (Electroless plating) **EP** (Electroplating)

1. Fabrication techniques (supported membranes)

Technique	Pros	Cons
PVD	 Used for many metals û deposition rate Control of thickness and composition of alloys No liquid wastes 	 Expensive equipment Influence of support geometry (shadowing)
CVD	Complex geometries	
Electroless plating	 û deposition rate Complex geometries Cheap equipment Simple operation Ease of scale up 	 For limited number of metals Limited number of elements in the alloy (ternary alloy difficult)
Electroplating	• û deposition rate	 Support must be conductive Need of electricity Mainly used for pure metal (not alloys)

2. Importance of the support

	H	$I_2 flux = J_{H_2} = \frac{P_e^0}{\delta} e^{-\frac{E_a}{RT}} \left(P_{ret}^n - P_{perm}^n \right)$
Self-supported	Thick Low hydrogen permeation High cost of Pd	 P_e⁰: Pre-exponential factor of H₂ permeability (mol m⁻¹ s⁻¹ Pa⁻ⁿ) δ: Membrane thickness (m) n: n-value f(limiting step)
Supported	Thin layer (defect free) High hydrogen permeation Alloy with other metals (Ag, Cu	H ₂ flux inversely proportional to the thickness

2. Importance of the support

http://www.inopor.com/en/index.html

2. Importance of the support

✓ Low mass transfer resistance	
✓ Small pore size	- Asymmetric ceramic support
✓ Smooth surface	
 Easy to integrate into a reactor 	Asymmetric metallic support
\checkmark No chemical interaction with Pd-based layer	Ceramic support: a-Al ₂ O ₃ , ZrO ₂ Metallic support: interdiffusion barrier

2. Importance of the support

	Support material (asymmetric)				
	Ceramic	Metallic			
Pros	 Low resistance to gas permeation Small por size Smooth surface Less expensive than metallic supports 	 Low resistance to gas permeation Mechanically strong No problem with sealing Easy to connect to a reactor 			

Winter School Eindhoven, 27-28/01/2025

3. Deposition of thin Pd-based supported membranes (< 5 μ m)

3. Deposition of thin Pd-based supported membranes ($< 5 \mu m$)

Ceramic supported thin Pd-based membranes (with Swagelok-graphite connectors)

Metallic supported thin Pd-based membranes (welded to dense metal tubes)

Winter School Eindhoven, 27-28/01/2025

4. Deposition of thin Pd-based double-skinned (DS) membranes (< 5 µm)

SEM image in cross section of **Pd-based DS membrane**

4. Deposition of thin Pd-based double-skinned (DS) membranes (< $5 \mu m$)

Scaling-up membrane production

1 per batch to 8 per batch

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

Winter School Eindhoven, 27-28/01/2025

Diffusion mechanism: Solution-diffusion

Winter School Eindhoven, 27-28/01/2025

Problems associated with Pd membranes

Disclosure or reproduction without prior permission of APOLO project is prohibited.

Problems associated with Pd membranes

Disclosure or reproduction without prior permission of APOLO project is prohibited.

23

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

- a) Ultra-thin $\leq 1 \mu m$ thick (ceramic support)
- b) Thin 4-5 µm thick (metallic support)
- c) Stability test in an empty reactor (metallic support)
- d) Stability test in FBMR (metallic support)
- e) Chemical interaction with catalyst

a) Ultra-thin ($\leq 1 \mu m$) Pd-Ag membranes (ceramic support)

J. Melendez et al., J. Membr. Sci 528 (2017) 12-23

b) Thin (4-5 µm) Pd-Ag membranes (metallic support)

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

technology alliance

Disclosure or reproduction without prior permission of APOLO project is prohibited.

technology alliance

e) Chemical interaction with catalyst

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

TiO₂

Applications/EU projects

Winter School Eindhoven, 27-28/01/2025

Applications

Process intensification/membrane reactors

Winter School Eindhoven, 27-28/01/2025

Applications/EU projects

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

33

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Water gas shift reaction (WGS) $CO + H_2O \rightleftharpoons H_2 + CO_2$

Steam reforming of methane (SMR)

 $CH_4 + 2 H_2 O \rightleftharpoons CO_2 + 4 H_2$

Ethanol steam reforming $C_2H_5 OH + 3 H_2O \implies 2 CO_2 + 6 H_2$

Ammonia decomposition

$$2 \text{ NH}_3 \rightleftharpoons \text{N}_2 + 3 \text{H}_2$$

Winter School Eindhoven, 27-28/01/2025

Disclosure or reproduction without prior permission of APOLO project is prohibited.

tecnala

DEMCAMER

Catalytic Membrane Reactors

EU projects

4F0 0C 0 1 have

		450 °C & 1 barg			
Membrane Code	Thickness Selective layer (μm)	H ₂ permeance (mol s ⁻¹ m ⁻² Pa ⁻¹)	N ₂ permeance (mol s ⁻¹ m ⁻² Pa ⁻¹)	Pressure exponent (-)	Ideal H ₂ /N ₂
A-2	~ 1	2.22·10 ⁻⁶	4.26·10 ⁻¹⁰	0.80	5210
A-3	~ 6-8	1.15·10 ⁻⁶	1.66·10 ⁻¹¹	0.72	68960

V. Cechetto et al., IJHE 47 (2022) 21220-21230

Disclosure or reproduction without prior permission of APOLO project is prohibited.

500 °C; 4 bar(a); F_{feed}= 0.5 L_N/min NH₃

H₂ recovery

(%)

93.2

84.8

NH₃ concentration

in the permeate

(ppm)

 $47(\pm 2.1)$

< 0.75

Smart combination of an innovative onboard Ammonia cracking technology, a Catalytic Membrane Reactor (CMR) with:

- 1. An advanced Fuel cell running on pure hydrogen (Prototype 1)
- 2. A novel Ammonia Engine running on an ammonia/hydrogen blend (Prototype 2)

Winter School Eindhoven, 27-28/01/2025

ADVANCED POWER CONVERSION TECHNOLOGIES BASED ON ONBOARD AMMONIA CRACKING THROUGH NOVEL MEMBRANE REACTORS

Winter School Eindhoven, 27-28/1/2025

THANK YOU FOR YOUR ATTENTION!

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor CINEA can be held responsible for them."