

Cs-enhanced Ru-based catalysts for low-temperature NH₃ decomposition

Gaetano Anello^{*}, Roberto Fiorillo, Giulia De Felice, Fausto Gallucci

Sustainable Process Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands

Introduction

In this study, ruthenium-based cesium-promoted catalysts were synthesized using different ruthenium loading and Ru/Cs molar ratios. The obtained materials were characterized via X-Ray Diffractometry and X-ray Photoelectron Spectroscopy. Then, the catalytic activity of these catalysts was tested for ammonia decomposition in a fixed bed reactor.

Catalysts synthesis

The catalysts employed in this work were prepared as follows:

- Metal precursors dissolution in ethylene glycol;
- Heating up to 110°C and reaction for 2 hours;
- Particles cleaning and separation;
- Drying (12h, 120°C) and calcination (4h, 550°C).

Results

The results showed the higher catalytic activity when ruthenium loading is about 5 wt% and Ru/Cs molar ratio is about 0.4 wt%. This can be ascribed to both the Ru cluster shape and the promoting effect of Cs via electron donation.

Catalyst	Code	Ruthenium	Cesium
		(wt%)	(wt%)
3wt% Ru/CeO ₂	3Ru	3.0	-
5wt% Ru/CeO ₂	5Ru	5.0	-
7wt% Ru/CeO ₂	7Ru	7.0	-
$2wt\% Cs - 5wt\% Ru/CeO_2$	2Cs5Ru	5.0	2
10wt% Cs – 5wt% Ru/CeO ₂	10Cs5Ru	5.0	10

Experimental setup

Characterizations

—Cs-Ru/CeO2	5Ru/CeO ₂	2Cs-5Ru/CeO₂	
Ru/CeO2	$10^{3+1} - 2006$	$1 = 100^{3+1} = 100^{6}$	

Conclusions

- > Ru-based-Ce-supported catalysts where successfully synthesized via polyol reduction method.
- \geq 5Ru/CeO₂ allowed an ammonia conversion reaching the equilibrium already between 375 and 400°C (1 bar, 6 000 Nml_{NH3} g_{cat}⁻¹ h⁻¹). \succ The addition of cesium to the formulation resulted in an increase of NH₃ conversion by 33% (350°C, 1 bar, 6 000 Nml_{NH3} g_{cat}⁻¹ h⁻¹). \geq NH₃ conversion decreased less then 1% over 500 hours of test (400°C, 1 bar), proving high stability of the catalyst over time.

